Spectral theory for facially homogenous symmetric self-dual cones.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facially Dual Complete (nice) Cones and Lexicographic Tangents

We study the boundary structure of closed convex cones, with a focus on facially dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and they behave well in the context of duality theory for convex optimization. Using the wellknown and very commonly used concept of tangent cones in nonlinear optimization, we introduce some new notions for exposure of f...

متن کامل

Self-Scaled Barriers for Irreducible Symmetric Cones

Self{scaled barrier functions are fundamental objects in the theory of interior{point methods for linear optimization over symmetric cones, of which linear and semideenite programming are special cases. We are classifying all self{scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with ...

متن کامل

Facially Exposed Cones Are Not Always Nice

We address the conjecture proposed by Gábor Pataki that every facially exposed cone is nice. We show that the conjecture is true in the three-dimensional case, however, there exists a four-dimensional counterexample of a cone that is facially exposed but is not nice.

متن کامل

Extension and Implementation of Homogeneous Self-dual Methods for Symmetric Cones under Uncertainty

Homogeneous self-dual algorithms for stochastic semidefinite programs with finite event space has been proposed by Jin et al. in [12]. Alzalg [8], has adopted their work to derive homogeneous self-dual algorithms for stochastic second-order programs with finite event space. In this paper, we generalize these two results to derive homogeneous self-dual algorithms for stochastic programs with fin...

متن کامل

Similarity and other spectral relations for symmetric cones

A one{to{one relation is established between the nonnegative spectral values of a vector in a primitive symmetric cone and the eigenvalues of its quadratic representation. This result is then exploited to derive similarity relations for vectors with respect to a general symmetric cone. For two positive deenite matrices X and Y , the square of the spectral geometric mean is similar to the matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1979

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-11829